Bayesian analysis of outlier problems using the Gibbs sampler

نویسندگان

  • Isabella Verdinelli
  • Larry Wasserman
چکیده

We consider the Bayesian analysis of outlier models. We show that the Gibbs sampler brings considerable conceptual and computational simplicity to the problem of calculating posterior marginals. Although other techniques for finding posterior marginals are available, the Gibbs sampling approach is notable for its ease of implementation. Allowing the probability of an outlier to he unknown introduces an extra parameter into the model but this turns out to involve only minor modification to the algorithm. We illustrate these ideas using a contaminated Gaussian distribution, a t-distribution, a contaminated binomial model and logistic regression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

Bayesian Unmasking in Linear Models

We propose a Bayesian procedure for multiple outlier detection in linear models which avoids the masking problem. The posterior probabilities of each data point being an outlier are estimated by using an adaptive learning Gibbs sampling method. The idea is to modify the initial conditions of the Gibbs sampler in order to visit the posterior distribution space in a reasonable number of iteration...

متن کامل

Bayesian Inference on Multilocus Genotypic Effects Using a Gibbs Sampler

Simultaneous analysis of multiple genetic variants is an essential strategy for understanding genetic dissection of complex traits, focusing epistasis along with additive and dominance effects of individual genes. Although phenotypic variation for complex traits might be largely explained by epistasis, most analyses have excluded the possibility of epistasis, especially with lack of individual ...

متن کامل

A Bayesian Approach to Approximate Joint Diagonalization of Square Matrices

We present a Bayesian scheme for the approximate diagonalisation of several square matrices which are not necessarily symmetric. A Gibbs sampler is derived to simulate samples of the common eigenvectors and the eigenvalues for these matrices. Several synthetic examples are used to illustrate the performance of the proposed Gibbs sampler and we then provide comparisons to several other joint dia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005